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Using H– and H2 as examples, it is demonstrated that parameters of the one-electron basis
sets optimized for explicitly correlated R12 calculations are quite different from those devel-
oped for conventional calculations that utilize a usual configuration interaction expansion
for the wavefunction. Systematic development of universal R12 suited basis sets is suggested,
using the even-tempered paradigm. In explicitly correlated calculations, such R12 consistent
basis sets should describe the given atom in a variety of bonding situations with a few µEh
absolute accuracy.
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When the three celebrated scientists started their successful career, ab initio
quantum chemistry (see, e.g., ref.1) stood at the beginning of a great boom.
At the same time it became clear that the one-electron approximation was
unsatisfactory and methods to treat electron correlation effects2,3 started to
be developed for large scale calculations. Inspired by the work of Čížek4,5 –
now safely denoted as classic – early developments towards this goal in the
then Czechoslovakia naturally used diagrammatic techniques in the deriva-
tion of working equations6,7. The method of choice was the many-body
perturbation theory (MBPT) and later the coupled cluster (CC) theory. First
applications were devoted to ionization potentials, electron affinities8–10,
excitation energies11 and correlation energy to the third order of MBPT12.
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What we can now call the “conventional” ab initio approach relies upon
the expansion of the final wavefunction in terms of configuration func-
tions (CF) created as antisymmetrized product functions of certain type of
one-electron spin-orbitals. These in turn are obtained within a one-electron
approximation, usually as linear combinations of the given one-electron
(computational) basis functions1. All possible CF’s form a complete config-
uration space. MBPT and CC theories provide alternative logical hierarchies
towards the full configuration interaction (CI) (see, e.g., ref.13). In the com-
putational basis the full CI approach is an exact method when the wave-
function is expanded in a complete configuration space, and it is vari-
ationally determined. Unfortunately, by far this does not imply that the re-
sult itself is accurate in the full-CI limit. The choice of the one-electron ba-
sis is crucial, since the convergence of desired calculated properties with
respect to the basis set size is frustratingly slow, even for “optimal” sets. In
order to reach a few microhartree accuracy for the energy of the simple
two-electron helium atom, the highest angular momentum quantum num-
ber (L) included in the basis14,15 should be L > 10. The calculation of
ground-state energies for small many-electron few-atom molecules with
an accuracy of sub-millihartree level via conventional configuration expan-
sion is practically an unrealistic task. In fact, according to the analysis of
partial-wave expansion of the He ground state, the basis set error goes
as16,17 ≈(L + 1)–3. Such a dependence applies both for variational and pertur-
bational calculations and also for atoms other than He 18.

Certainly, the basis set should be able to describe the electron density in
space adequately. For one-electron approximation, this means to provide
appropriate (possibly nearly optimal) spin-orbitals. Nowadays, for small
molecules, calculations with basis sets saturated in this sense (nearly the
Hartree–Fock limit) are feasible.

However, the mentioned slow convergence of CI with L is caused by a
different problem. The origin of this problem is attributed to the poor de-
scription of the Coulomb hole. As shown by Kato19 for small interelectron
distance rij = | |

r r
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Within the approximate solutions of the Schrödinger equation through ex-
pansion in an orbital basis the correlation cusp cannot be reproduced. Simi-
larly to two electrons, the wavefunction has also a cusp at the position of
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the nucleus. Again, using the computationally pragmatic Gaussian basis
sets20, this behavior cannot be described. However, the error introduced by
this defect is much smaller and converges rather fast with the dimension
(N) of the (atom-centered) basis set as21 ~ANk exp (–a N). A, k, and a are pa-
rameters.

There are most probably hundreds of papers dealing with the basis set
construction and improvements. Early development was reviewed in the
second chapter of the book by Čársky and Urban1, or, e.g., in refs22,23. This
problem was also a topic of the early work of our celebrated persons24–30.

In the present paper we shall consider basis sets from the viewpoint of
wavefunction expansions that go beyond the “conventional” ones as the
aforementioned. We shall discuss explicitly correlated expansions that
a priori treat the correlation cusp via the introduction of terms explicitly de-
pending on rij.

First, we briefly recapitulate the theory. Further, using hydrogen as an ex-
ample, we illustrate how the optimal one-electron basis set must be
changed if one switches from conventional to explicitly correlated expan-
sions. We show that within the explicitly correlated approach basis sets
that should work universally with high precision for a range of bonding
situations are feasible.

THEORY

The R12 Approach

Long ago it was observed that inclusion of terms linear in r12 in the wave-
function expansion speeded up the convergence of helium ground state tre-
mendously31. Hylleraas31,32 suggested expanding the final wavefunction in
a series of CI-type expansions associated with various odd powers of r12.
Though not difficult to apply to two-electron systems, such an approach
becomes impractical as soon as more electrons are involved. The reason is
simply that an interaction of the two-electron rij with the two-electron
Hamiltonian gives rise to a four electron operator, in general. Conse-
quently, the amount of integrals to be treated becomes too large. Moreover,
such integrals are difficult to calculate.

There is another concept that goes a priori beyond the orbital expansion –
it is based upon a direct expansion of the wavefunction both in terms of
one- and two-particle Gaussian type functions33,34 which are variationally
optimized. Similarly to one-particle Gaussians, the integrals with explicitly
correlated two-particle Gaussian functions are not difficult to calculate.
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Nevertheless, an enormous number of integrals remains, and nonlinear pa-
rameters of these functions have to be optimized for each system. In spite
of successful implementations within the coupled cluster ansatz that en-
abled treatment of larger than four-electron systems35,36, this concept most
probably remains feasible for small systems only. For up to four-electron
systems, extremely accurate results can also be obtained with exponentially
correlated Gaussians37.

A family of approaches denoted as R12 methods is based on the fact that
in order to satisfy the cusp condition (1) it is sufficient to introduce terms
linear in r12 to an orbital product expansion17,38. Though originally
Kutzelnigg applied the R12 ansatz to helium, this ansatz can be simply gen-
eralized. Let us introduce the operator

$ .r rpq
p q

=
>

∑ (2)

According to Kutzelnigg38, the exact wavefunction (Ψ) can be appropriately
described as:

| $| | ,Ψ Φ〉 = 〉 + 〉1
2

r χ (3)

where Φ is a “conventional” reference function resulting from the solution
within a one-electron approximation and χ is a “conventional” CI-type
expansion. Ansatz of Eq. (3) itself would not solve the problem of many-
electron integrals. In order to arrive at an approach in which those can be
avoided, one needs further considerations.

There is a substantial overlap between $rΦ and χ that is undesirable. In
other words, from $rΦ it is desirable to out-project the content expressible
in the given one-electron basis. To simplify, let us assume that Φ is a single
Slater determinant. Let ϕi, ϕj, etc. be occupied spin-orbitals and ϕp, ϕq, etc.
denote arbitrary spin-orbitals of the given computational basis. We can de-
fine a projector to this basis

$ | |.P p p
p

1 = 〉〈∑ ϕ ϕ (4)

In Φ, the operator r12 acts on pair products of occupied spin-orbitals. The
afore-mentioned out-projecting for an antisymmetrized product function
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means that we have

$ | ( $ )( $ ) | .Q r ij P P r ij12 12 1 2 121 1〉 = − − 〉 (6)

Here we have introduced $Q12 as a two-particle projector to the basis comple-
mentary to the given computational one. In fact, by the action of $Q r12 12 on
|ij〉, one replaces the pair function |ij〉 by the same pair function multiplied
by r12. More generally, in |Φ〉 one can replace ϕi(1)ϕj(2) by an arbitrary prod-
uct r12ϕk(1)ϕl(2). Thus we can define a replacement operator $R ij

kl by

$ | $ | .R ij
kl ij Q r kl〉 = 〉12 12 (7)

Such replacement can be denoted as r12-double excitation. Now, instead
of a fixed factor 1/2 in Eq. (3), we can associate a scalar coefficient ckl

ij with
each $R ij

kl . These operator amplitudes are determined similarly to those asso-
ciated with the “conventional” configuration functions. The total r12-dou-
ble excitation operator is then given by:

$ $R ckl
ij

i j
k l

ij
kl=

>
>

∑ R . (8)

Hence, by introducing $RΦ into the final wavefunction expansion, the con-
figuration space is extended by r12-double excitations. Methods using this
ansatz – though sometimes with a slightly different projector – are in cur-
rent literature denoted as R12 approaches. It is clear from Eq. (7) that such
r12-double excitations vanish in the case of complete one-electron basis.

First-order wavefunction in the Møller–Plesset R12 (MP2-R12) theory
reads:

( )Ψ Φ Φ( ) ( ) ( ) ( ) ( )$ ,$1 1 1 1 1= + = +
>
>

∑R ckl
ij

i j
k l

ij
klχ χR (9)

where χ(1) is exactly the same as within the conventional MP2 theory. In
first applications, c was restricted to diagonal cij

ij , which did not provide an
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orbital invariant approach39. Orbital invariant R12 approaches followed
after introducing MP2-R12 with the full ansatz40 in Eq. (9). Later, it was shown
that in the coupled-cluster theory, the r12-double-excitation operator can be
treated together with the (conventional) global cluster excitation operator
( $T), defining so the coupled cluster R12 (CC-R12) ansatz41–43:

Ψ ΦCC – R12 = + = ∑exp( $ $) ; $ $ ,R T T Tn
n

(10)

where $Tn is an n-tuple-excitation operator. With CC-R12 highly accurate re-
sults can be obtained as collected in a recent review by us44. The main ad-
vantage of R12 approaches is that, formally, the expansion remains limited
to a one-electron basis.

In working equations of all the R12 methods, avoiding of difficult many
electron integrals is accomplished within the so-called “standard approxi-
mation”42,45. The latter is based upon an elaborate use of completeness in-
sertions, and upon using the favorable convergence pattern of the partial
wave expansions of some “difficult” matrix elements. In approximation B,
which is used in CC-R12, all the matrix elements are neglected that have a
terminating l expansion due to the symmetry, or for which the error of the l

expansion decreases as45 ~O(L + 1)–7.
Beside the two mentioned explicitly correlated approaches, other variants

were suggested that basically combine features of both the R12 ansatz and
the explicitly correlated Gaussians: r12 is replaced by a fit of only few explic-
itly correlated Gaussians46,47. A review of explicitly correlated methods can
be found in ref.48

R12 Approach and Basis Sets

Standard approximation turns to exact treatment for atoms, provided the
basis set is well saturated at a certain level of lower angular momenta. Un-
der the latter condition it is close to “exact” for molecules, too. Practically,
this limitation means that saturation up to L = 3Locc is required, where Locc
corresponds to the highest angular momentum of the occupied orbitals. In
addition, in CC-R12, all shells that are present in the computational basis
set should be saturated42,43. Though the latter condition follows from the
theory, ten years of experience show that it is not a very strict requirement,
since it concerns higher-order contributions. We have to note that for rele-
vant calculations the R12 contributions of the same order – in the sense of
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MBPT – are smaller by about two orders of magnitude than those being
attributed to the conventional configuration space44.

One of the reasons which imply saturation of the basis set is the require-
ment that the computational basis is large enough to substitute the
resolution of identity. Under such assumption, one can factorize the three-
electron integrals to products of two-electron integrals. Latest development
at the MP2-R12 level shows that for this purpose an auxiliary basis can be
introduced, and, in principle, the computational basis can be a standard
one from conventional calculations49. On the other hand, the same study
indicates that in order to obtain highly accurate results that are expected
from explicitly correlated calculations, the basis set has to be large. Even-
tually, the use of auxiliary basis with a little modified R12 ansatz provides a
possibility of reducing the requirement for the L saturation to lower levels
than 3Locc. Work along this line within the CC-R12 theory is in progress50.

Most R12 calculations reported so far used very large conventionally opti-
mized basis sets which were adapted in a heuristic fashion. Even if the satu-
ration level could be decreased to L = Locc, the standard approximation
requirements imply that the basis sets should provide near Hartree–Fock
limit energies at the one-electron approximation level. For first row atoms,
high-quality 18s13p basis sets of this kind were developed by Partridge51.
Those proved to be good outsets for constructing R12 reliable basis sets52.
Adequate basis sets were often created from correlation consistent bases53

with high cardinal numbers54, either fully uncontracted or, better, with the
sp set replaced by that of Partridge. In addition, both the sp and polariza-
tion sets were usually augmented by few diffuse or tight functions by mere
logarithmic extrapolation55–59.

Although such basis sets worked well, there are good reasons to look for
improvements. One can certainly assume that optimization at the conven-
tional niveau necessarily interferes with some partial compensation for the
poor description of the electronic cusp. Hence, the range of exponents for
the Gaussian functions may not be optimal for R12 calculations. Surely,
this problem can be solved by augmenting the “conventional” sets, though
any enlargement is undesirable from the computational point of view. Al-
ternatively, it is likely that specifically R12-optimized bases could be either
smaller for comparable quality, or would provide more accurate results
than the aforementioned R12 variants of conventional sets.
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OPTIMIZATION PROCEDURE

In order to explore the possibilities in this direction, we start with basis sets
close to the HF limit, and focus on polarization functions only44. Reducing
the number of adjustable parameters is conveniently accomplished through
using even-tempered sets60,61. Here we shall define each set by the most
compact exponent of the Gaussian function (α l0

) and the progression ratio
(βl), which provides:

α α βl l l
i

li n
0

0 1= = −for , ... , , (11)

where nl is the number of functions in the given shell l.
Our objective is to find such basis sets that would be capable of describ-

ing different target systems with high (and similar) accuracy. Appropriate
target systems are e.g. positively charged, neutral, negatively charged atoms
and, eventually atoms under the influence of an external electric field. For
the latter, the original symmetry of the atom is broken, thus simulating the
situation in polar bonds. Similar target systems were used in developing the
ANO basis sets by Widmark et al.62 Such optimization is in progress for at-
oms from Be to Ne, for polarization functions up to h, and will be pub-
lished elsewhere63.

In order to find the global “compromise” optimum for all the target sys-
tems and the polarization set given by l, we proceed as follows.

First, we calculate E = E(α l0
, βl) energy surfaces for individual target sys-

tems. In this step, the parameters for lower angular momenta are kept from
previous optimization, or from the outset. It is not necessary to include
higher angular momenta, if only this is not required by standard approxi-
mation. So, for instance, f functions must be present while d functions are
optimized as soon as in any of the target systems p orbitals are occupied,
but it is not necessary to include g functions while f set is optimized.

In the second step, we construct error maps for each target system that
monitor the energy deviation for arbitrary α, β from the minimum on the
E(α,β) surface.

Finally, a global error map is constructed. For the given α, β the largest of
the errors out of all the target systems is taken as the global error value. The
minimum on this global error map corresponds to globally optimal param-
eters α l0

and βl. These are then used in subsequent optimization of a higher
l set.
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A SIMPLE CASE – THE BASIS SET FOR HYDROGEN

In order to see whether the matter would be worth effort, we started with
the basis set for hydrogen. Because H+ and H atom are irrelevant target sys-
tems (with no electron correlation), we have investigated H– and H2 with a
fixed bond length of 1.4 a0 that is close to equilibrium distance. These two
systems have the advantage that the full-CI limit is achieved at the CCSD
level. Thus within the CCSD-R12 theory with a large enough basis, calcu-
lated energies should come very close to exact values. Moreover, the stan-
dard approximation requirements are exactly fulfilled with saturation of s
set for H–, and practically also for H2. Consequently, we can start from a
well saturated s set, and subsequently optimize p, d, f, etc. polarization sets
with only a total sp, spd, spdf, etc. bases, respectively.

Our investigations used the aug-cc-pV5Z basis as a starting point. This
set comprises 9s5p4d3f2g functions that are normally contracted to
6s5p4d3f2g, i.e. 80 functions per H atom. For example, this size is needed
to achieve an accuracy within few kJ/mol in thermochemistry of small hy-
drides by using conventional calculations and extrapolations64. Fully un-
contracted and augmented with one tight p (α = 11.9) the spdf subset (68
functions) has proved to be equally accurate in the calculations of atomiza-
tion energies using the R12 theory59, but with no extrapolations. We call
this 9s6p4d3f as the “parent” basis here.

Our aim was to compare the trends when the basis set of this particular
size is optimized for conventional and R12 calculations. Comprehensive re-
sults are collected in Table I. We have left the 9s set untouched from the
parent basis. p, d, and f sets were optimized as described above. Results us-
ing the 9s6p subset from the parent basis and optimizing only d and f sets
in ref.44 were rather preliminary, but interesting enough to prompt further
research in this direction that would also reinvestigate the 6p set.

The optimized 6p set (entry H–, H2) resulted from calculations with 9s6p
set, 4d set from 9s6p4d calculations with the optimal 9s6p subset, and fi-
nally, while optimizing the 3f set we used the optimal 9s6p4d subset. This
sequence has been performed separately using the R12 and “conventional”
methods.

We have to note that the parameters in the entries for H– and H2 of Table I
correspond to minimal energies of particular systems when the compiled
optimum subset for lower angular momenta was used, i.e. these subsets are
always the same for all the three lines (H–, H2 and ’H–, H2’). For comparison,
we display the energies and approximate parameters for the subsets of the
parent basis. The latter is close to an even tempered series, and we can de-
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TABLE I
Comparison of the parameters of the 9s6p4d3f basis and its subsets optimized for R12 and
conventional calculations

Optimmized for: nl a α l0
α l n−1

βl E
H −/Eh EH 2

/Eh ∆E/µEh
b

R12 H– 6p 4.0 0.028 0.37 –0.5275685 –1.1741004 20

H2 10.0 0.116 0.41 –0.5269457 –1.1741207 623

H–, H2 5.0 0.035 0.37 –0.5275531 –1.1741051 15

conv. H– 6p 3.5 0.041 0.41 –0.5263656 –1.1722226 31

H2 8.0 0.183 0.47 –0.5255418 –1.1722540 823

H–, H2 4.5 0.066 0.43 –0.5263526 –1.1722368 17

R12 parent 6p 11.9 0.074 0.36 –0.5271560 –1.1741172 412

conv. –0.5263420 –1.1722380 23

R12 H– 4d 0.6 0.038 0.40 –0.5276599 –1.1743390 73

H2 2.0 0.221 0.48 –0.5275881 –1.1744118 72

H–, H2 1.4 0.065 0.36 –0.5276517 –1.1744050 8

conv. H– 4d 2.5 0.117 0.36 –0.5272154 –1.1738972 30

H2 5.0 0.426 0.44 –0.5270723 –1.1739277 143

H–, H2 3.5 0.192 0.38 –0.5272048 –1.1739140 14

R12 parent 4d 2.95 0.156 0.38 –0.5273878 –1.1744134 282

conv. –0.5272041 –1.1739151 13

R12 H– 3f 0.4 0.058 0.38 –0.5276732 –1.1744168 13

H2 1.5 0.317 0.46 –0.5276543 –1.1744349 19

H–, H2 1.0 0.090 0.30 –0.5276680 –1.1744298 5

conv. H– 3f 2.0 0.231 0.34 –0.5273862 –1.1741831 31

H2 4.0 0.706 0.42 –0.5273440 –1.1742142 42

H–, H2 3.0 0.347 0.34 –0.5273752 –1.1742047 11

R12 parent 3f 2.51 0.274 0.33 –0.5274743 –1.1744371 199

conv. –0.5273836 –1.1741980 16

a Subsets of 9s6p4d3f up to the given l. 9s taken from the parent set, the even-tempered nl
set subsequently optimized within CCSD-R12 or conventional CCSD, as noted in the first
column. For the parent basis set, the α and β parameters are approximate. Subsets are taken
from the original parent set (see the text), and they are the same for both the R12 and con-
ventional calculations. b For the given l, a maximum of the two deviations from the optimal
values for individual systems.



termine approximate corresponding α and β parameters from the most dif-
fuse and the most compact exponents of the original set using the formula

b al
n

l l
l − =1 ( / ) .α

diffuse compact
(12)

The Range of Gaussian Exponents

One trend is clear for all the optimized sets, namely that the R12 suited
bases are more diffuse than those optimized for conventional calculations.
This statement is valid for individual target systems, as well as for the
global optimum basis.

Concerning the range of exponents, an apparently different behavior is
seen for the 6p set and for the higher polarization functions. While for 6p
functions with explicitly correlated method the covered range of exponents
was broader than with conventional approach, for 4d and 3f sets the oppo-
site is true.

In fact, to localize the absolute minima for individual H– and H2 αp – βp
surfaces is quite difficult, since there are several local minima that differ
at the microhartree level. The parameters in Table I were estimated from
a grid of 21 × 24 points with α in the range 2.5–12.5 by 0.5 steps and with
β in the range 0.25–0.71 by 0.02 steps.

On the other hand, the occurrence of such almost equivalent local min-
ima with very small barriers between them denotes a fair saturation of the
given set for the given system. On the α–β map these minima are located
along (almost) straight lines with different slopes for individual target sys-
tems. Consequently, the global optimal region for H– and H2 together can
be clearly identified. In Table II we show the parameters that resulted from
an optimization of 7p functions with the same 9s set. Surprisingly, on the
very flat surface for H2 the apparent minima correspond to smaller α0 val-
ues than for 6p for both the R12 and conventional calculations. Neverthe-
less, parameters for the common optimum behave as expected, i.e. the
range covered by the exponents is broadened. Actually, the compiled 7p ba-
sis is close to a simple extension of the 6p set by one more compact func-
tion. This addition brings about the same (tiny) effect at both conventional
and R12 levels. Thus, from the point of view of various calculated proper-
ties, the 6p set seems to be, as stated above, saturated enough.

The p set is the most important polarization set to describe the dynamic
electron correlation. Because of the fair saturation the differences in the
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covered exponent ranges for the R12-optimized and conventional sets are
quite small. The slightly denser mesh of functions in conventional sets re-
sults from the need to describe the electronic cusp through an expansion in
the given basis set, whereas in R12 calculations this is done through ex-
plicit introduction of the r12 into the wavefunction. Consequently, the full
“power” of the 6p set is released, enabling a better spatial covering, corre-
sponding to the broader p exponent range.

For the same reason, the R12-optimized 4d and 3f sets tend to prefer the
diffuse regions, while in conventional bases much more compact functions
are optimal.

Individual and Global Optima

An example for the different pattern of the energy error contour maps from
R12 and conventional optimizations is demonstrated by Figs 1 and 2 for
the d functions. It is characteristic that in the case of R12 basis the two
minima (for H– and H2) are much closer to each other than for the conven-
tional one. Consequently, the error of the global basis set with respect to
the two minima is lowered by about a factor of two, for both 4d and 3f sets
(cf. Table I). In Fig. 3 we compare the global error maps from R12 and con-
ventional optimization. For the given angular momentum, the contours
limit the regions where the basis sets defined by any α, β coordinates are re-
liable within the given global error. The broader limits in R12 calculations
are obvious. Note that in conventional map the contour for 10 µEh is miss-
ing, since the smallest error exceeds this limit.
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TABLE II
Parameters of the 7p even tempered set of the 9s7p basis for hydrogen as optimized for con-
ventional and R12 calculations. 9s set is the same as in Table I

Optimmized for: α l0
α l6

βl E
H −/Eh EH 2

/Eh ∆E/µEh
b

R12 H– 6.0 0.029 0.41 –0.5275724 –1.1741086 17

H2 8.0 0.086 0.47 –0.5271408 –1.1741251 432

H–, H2 12.5 0.032 0.37 –0.5275652 –1.1741158 9

conv. H– 5.0 0.032 0.43 –0.5263693 –1.1722376 20

H2 7.0 0.155 0.53 –0.5259441 –1.1722579 425

H–, H2 9.0 0.057 0.43 –0.5263624 –1.1722510 7

a Error as defined in Table I.



From Figs 1–3, one can clearly see that the global R12-optimized basis is
more universal in R12 calculations than its conventional counterpart in
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FIG. 1
Error contour maps from E = E(αd,βd) 9s6p4d CCSD-R12 energy surfaces of H2 (solid) and H–

(dashed). Contours correspond to errors of 1, 5 and 10 (thick) µEh with respect to the minima
of the respective energy surfaces whose locations are denoted by the crosses. The 9s6p subset
was R12-optimized as described in Table I
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FIG. 2
Error contour maps from E = E(αd,βd) 9s6p4d CCSD energy surfaces of H2 (solid) and H–

(dashed). Contours correspond to differences of 1, 5 and 10 (thick) µEh with respect to the
minimum of the energy surface. The 9s6p subset was optimized using conventional approach
(see Table I)
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conventional calculations. The wide range of α and β parameters for which
the global error remains rather small supports the statement that the polar-
ization sets for R12 calculations can be safely even-tempered, irrespective of
the small number of functions in them.

Errors and Consistency

The last columns in Tables I and II demonstrate the limiting errors in the
energies calculated with the given polarization set as compared to sets opti-
mized for individual molecules. The H– entry indicates the error for H2 us-
ing the polarization set optimal for H– and vice versa for the entry H2.
Finally, the entry ’H–, H2’ corresponds to the larger of both errors for the
globally optimal polarization set. The same applies to the parent basis. We
could say that the set is internally consistent if this error is close to zero.

It is not surprising that the error for H– is very large if calculated with
functions that are optimal for H2. This is equally valid for R12 and conven-
tional calculations. Our results also show that the parent basis, which was
basically optimized for conventional calculations, performs only slightly
worse than sets optimized for conventional calculations. On the other
hand, R12 results with the parent set clearly show that bases well suited for
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FIG. 3
Global error contour maps from E = E(αd,βd) 9s6p4d energy surfaces of H2 and H–. Solid lines
correspond to CCSD-R12 optimized sets (see Fig. 1) and dashed lines to conventional CCSD
optimized sets (see Fig. 2). Crosses denote the positions of the minimum errors (see Table I).
Contours cover areas with maximum errors up to 10 µEh (thick line for R12 only), 15, 30, 50,
and 100 µEh (thin lines for both cases)
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conventional calculations can fail in R12. The parent basis was rather in-
consistent for R12 calculations, providing a big consistency error of about
200 µEh for H– with 9s6p4d3f set and still more when only its subsets were
used. However, the global R12-optimized basis provides a consistency error
of only a few µEh for each polarization set.

CONCLUSIONS

We have shown that basis sets optimized for conventional calculations are
far from being optimal in explicitly correlated R12 approaches. On the ex-
amples of H– and H2 we have demonstrated that the standard practice of us-
ing uncontracted “conventional” sets subsequently augmented in the tight
and diffuse region, though acceptable for some particular systems, may be
inadequate for others. If one is seeking a universal predictive power, such
bases are inappropriate.

As our results show, the simple even-tempered paradigm works well (at
least for the large basis sets needed in highly accurate calculations) and can
be used for a systematic development of R12-suited universal basis sets.
Without any change, those could be used for atoms in various bonding
situations, basically preserving the absolute accuracy achievable at the R12
level. The optimization procedure consists in finding the minimum error
region on the overlapping α–β maps for few different atomic systems that
cover the spectrum of all possible bonding situations. This is done for each
polarization set separately, while the sets for lower angular momenta
should closely provide the Hartree–Fock limit at one-electron approxima-
tion level.

As an additional benefit, our preliminary compilations also indicated that
such optimization procedures may lead to basis sets intrinsically free from
numerical instabilities occurring from time to time in R12 calculations44,65.
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